

REGULATORY RISK ASSESSMENT AND FOOD INNOVATION IN EUROPE

Nutrition and Food Innovation Unit (NIF)

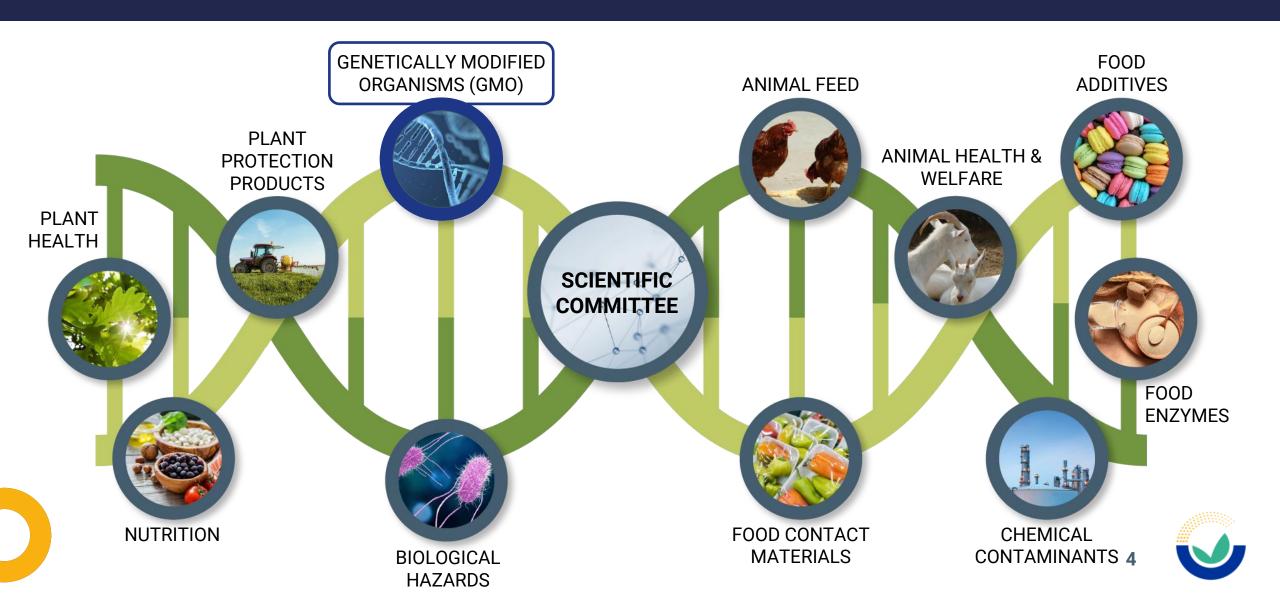
GMO Team

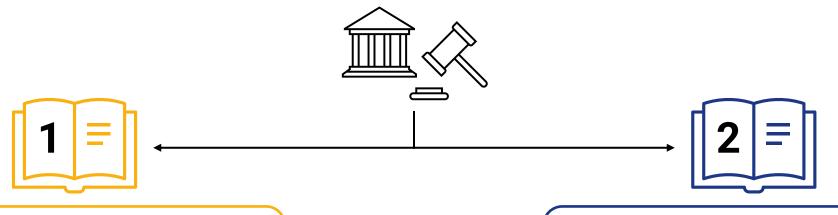
OUTLINE

- Scientific Panels and Committee
- Guidance for GMOs
- Pillars of GMO Risk Assessment

- Scope and Traits of GMOs
- Future opportunities for Protein Safety
- Stacked events

- Horizon scanning and opinions
- Plants, Microorganisms and Animals




- Reference body for risk assessment of food and feed in the EU
- **2002**
- Restore confidence in the EU food supply
- Clearly separate risk assessment from risk management

THE SCIENTIFIC PANELS AND COMMITTEE

EU LEGAL FRAMEWORK FOR GMO RISK ASSESSMENT

Directive 2001/18/EC

On the deliberate release into the **environment** of GMOs

AMENDMENTS FOR ERA

Directive (EU) 2018/350

Regulation (EC) No 1829/2003

On GM **food** and **feed** including derived products

IMPLEMENTATION for PLANTS

Regulation (EU) 503/2013

THE 4 PILLARS OF THE GMO RA

1 Molecular characterisation (MC)

Comparative analysis (<u>CA</u>)

- Info on vectors, inserted/deleted sequence(s), new traits
- Info on the protein expression levels
- Bioinformatics data
- Genetic/phenotypic stability

- Agronomic and phenotypic characteristics
- Compositional data

- Toxicological assessment
- Allergenicity assessment
- Dietary exposure
- Nutritional assessment
- PMM

- Persistence/ invasiveness
- Gene flow
- (non-)target organisms
- Biogeochemical cycles
- PMEM

GUIDANCE DOCUMENTS

- √ legal completeness of incoming dossiers
- ✓ avoid Additional Data Requests
- ✓ make assessments consistent & transparent

+ need for

- Stakeholders meetings (Twice per year)
- Digital Tools for interaction
- General Pre-Submission Advice
- Technical hearings with experts
- Clarifying Teleconferences

Scientific guidance

Applicable to all applications (submitted before or

GM Plants - Molecular characteris

Main guidance

. 2011: Guidance on risk assessment of food ar

Molecular characterisation

- 2018 <u>Explanatory note on the determination of</u> the context of genetically modified plant applic
- 2024 <u>Technical Note on the quality of DNA secharacterisation of genetically modified plants</u>
- 2025 Risk assessment considerations for RNAi-based genetically modified plants

Food/feed safety

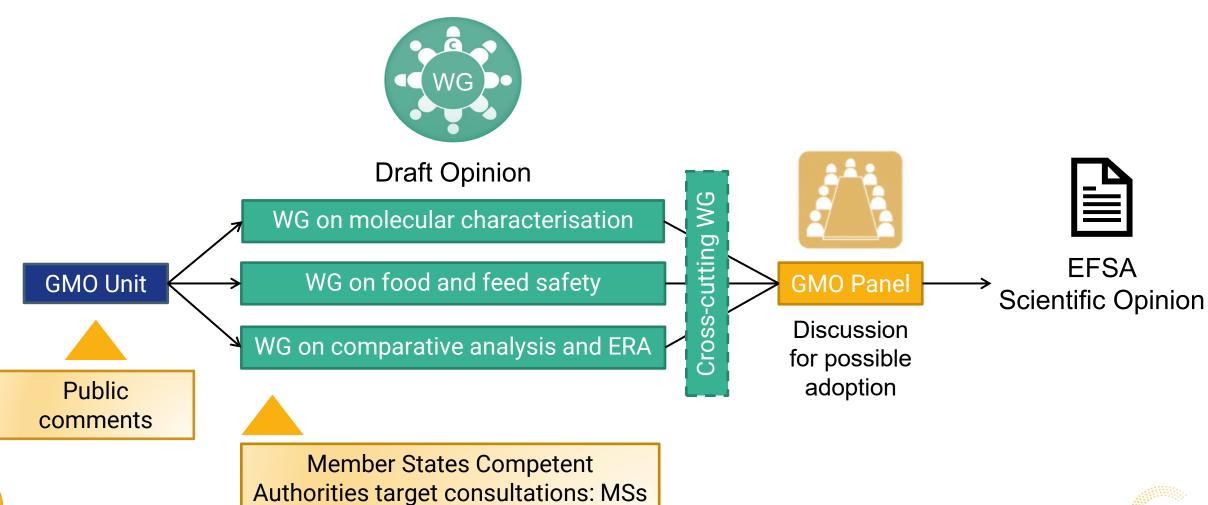
- 2014 Explanatory statement for the applicability of the Guidance of the EFSA Scientific Committee on conducting repeated-dose 90-day oral toxicity study in rodents on whole food/feed for GMO risk assessment
- . 2017 Guidance on allergenicity assessment of genetically modified plants
- 2019 <u>Human dietary exposure assessment to newly expressed proteins in GM foods</u>

Comparative assessment

- 2011 Guidance on the selection of comparators
- 2015 <u>Guidance on the agronomic and phenotypic characterisation of genetically</u> modified plants
- 2018 Explanatory note on the selection of forage material suitable for the risk assessment of GM feed of plant origin

GM Plants - Environmental Risk Assessment

- . 2010 Environmental risk assessment of GM plants
- 2017 Explanatory note on DNA sequence similarity searches in the context of the assessment of horizontal" gene transfer from plants to microorganisms


GM Plants - Post Market Monitoring

• 2011 Guidance on Post-market environmental monitoring (PMEM) of GM plants

WORKING GROUP (WG)

comment on the confidential dossier

Scope and Traits of GMOs

Future opportunities

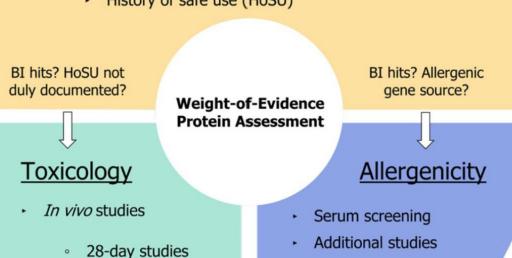
- Protein safety
- Stacked events

TRAITS OF GMO APPLICATIONS

Single and stacks events

TRAITS

Insect resistance
Herbicide tolerant
Drought tolerance
Metabolic
Yield enhanced
Male sterility


REGULATION 503 – PRESENT REQUIREMENTS FOR NEPS

>Food and Feed assessment
>> PROTEIN SAFETY of NEPs

Overarching information

- Molecular and biochemical characterisation
- Bioinformatic (BI) analyses
- In vitro protein degradation
- · Effect of temperature and pH
- History of safe use (HoSU)

(Acute studies)

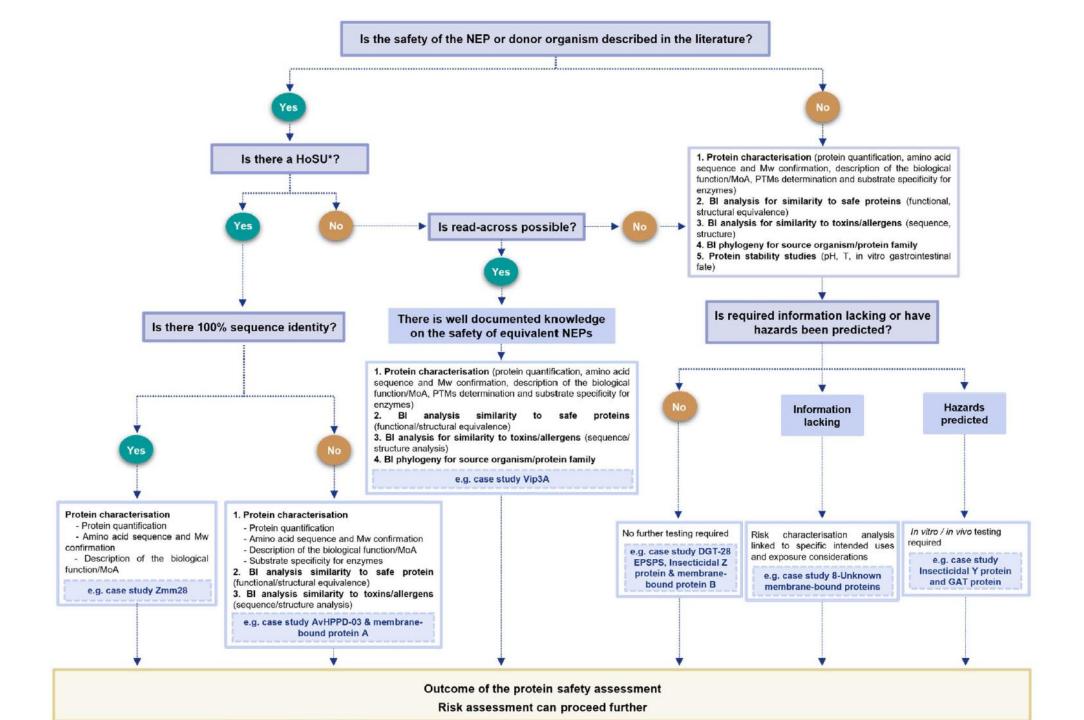
EFSA SELF-MANDATE: FUTURE OPPORTUNITIES OF PROTEIN SAFETY

Present Requirements (Current Situation)

Experience Gained (Challenging from complex cases)

 Codex Alimentarius and in EU, Regulation No 503/2013

- High number of new proteins
- New proteins difficult to characterise/test
 - Membrane-bound
 - Transcription factors
- New proteins displaying potential hits with known allergens or toxins

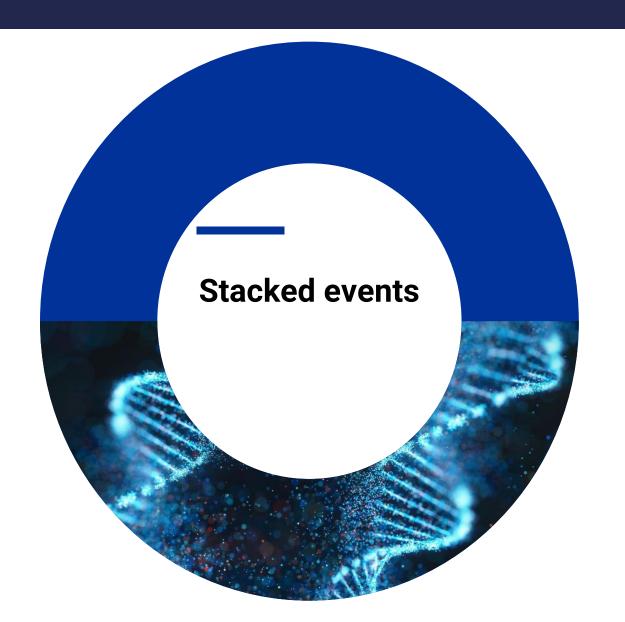


<u>Future</u> <u>opportunities</u>

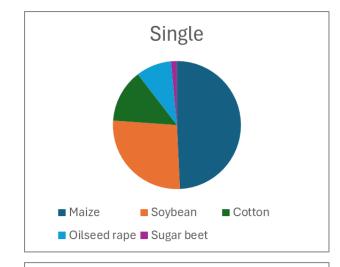
provide complementary/alternative methods

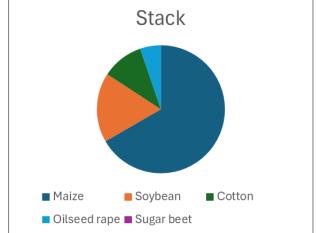
ADOPTED 30 June 2025

DEVELOPMENT NEEDS - 3 PRIORITIES


- HoSU: define with measurable criteria (e.g., generations of exposure, consumer-group size, intake metrics) and minimum consumption thresholds
- In silico tools: Tox/Allergen databases: connect, populate with "safe proteins" + Red Flags for interpretation
- In vitro tools: in vitro digestion and other key pathways
- Test whether harmonised in vitro digestion protocols are suitable for determining the gastrointestinal fate of proteins
- Identify and qualify NAMs for key pathways to harm, such as gut barrier integrity and immune sensitization
- Read-outs, biological relevance etc....

EVENT 1 X EVENT 2 X

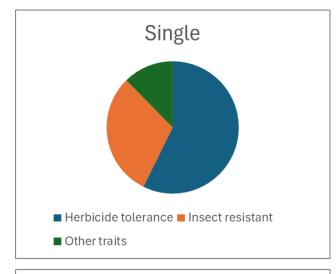


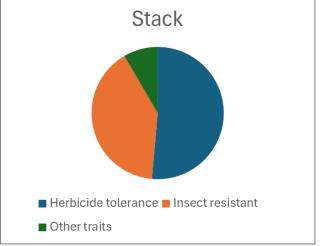

EXPERIENCE GAINED BY THE GMO PANEL

In the last 20 years, the EFSA GMO Panel assessed almost 130 applications, of which about 60 were for stacks*.

Crop	Single adopted #	Stack adopted #
Maize	33	38
Soybean	18	10
Cotton	9	6
Oilseed rape	6	3
Sugar beet	1	0
TOTAL	67	57

Single and stack applications adopted per species





EXPERIENCE GAINED BY THE GMO PANEL

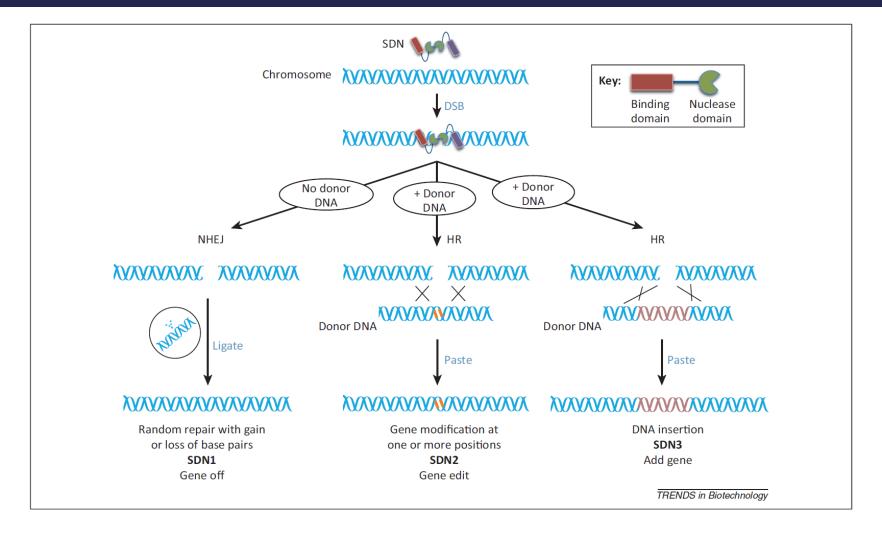
Trait	Single adopted #	Stack adopted #
Herbicide tolerance	51	55
Insect resistant	27	43
Other traits	11	9

Single and stacked applications adopted per trait

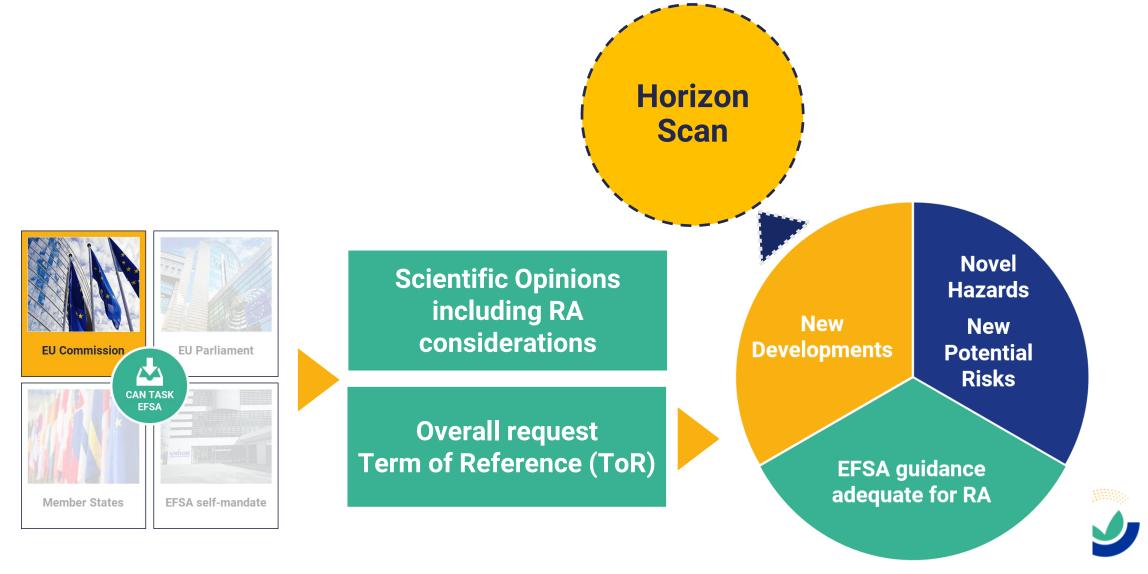
DISCUSSION WITH EXPERTS

➤ Based on the experience accumulated during more than 20 years assessing single and stacked events, the GMO Panel is discussing whether in **justified cases**, some specific sets of data may not be necessary for the assessment of the stacks.

➤ The cross-cutting WG of the GMO Panel is leading the discussion. The focus is on the scientific evidence used to assess interactions between single events, and whether the weight of such evidence may change for specific stacks.



- Horizon scanning and opinions
- NGTs, SynBio, Gene drives
- Plants
- Microorganisms
- Animals

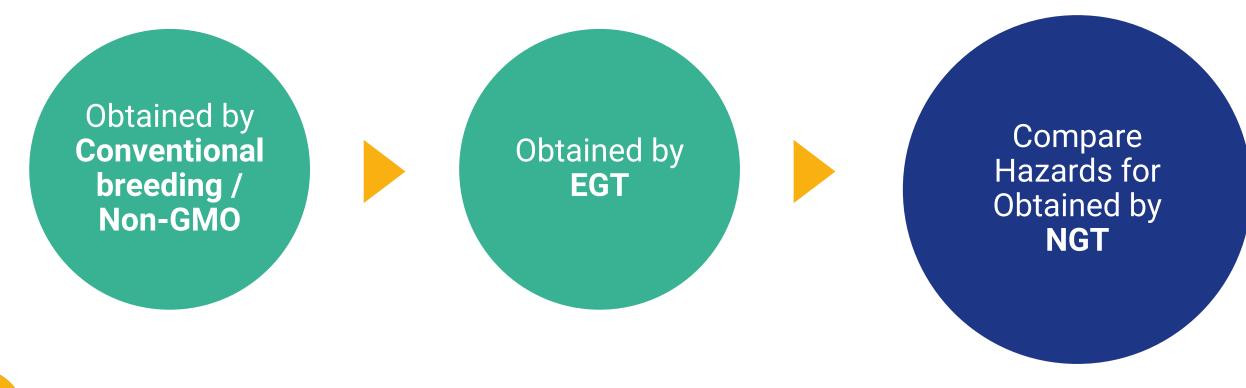


SDN1, SDN2, SDN3

SERIES OF MANDATES FROM EU COMMISSION TO EFSA

BIOTECHNOLOGY MANDATES

Synthetic biology


	In microorganisms (FF) / in plants * (FF)	4 Published	2020- 2022	
In microorganisms (MC + ERA) / in plants (MC + ERA)	<u>link</u> / <u>link</u>			
	<u>link / link</u>			

Gene Drives

	Published, <u>link</u>	Nov 2020
Evaluation of existing EFSA guidelines for assessment of		
genetically modified insects containing engineered gene drive		

GENERAL APPROACH TO ADDRESS EC REQUESTS

BIOTECHNOLOGY MANDATES - NGT

Plants

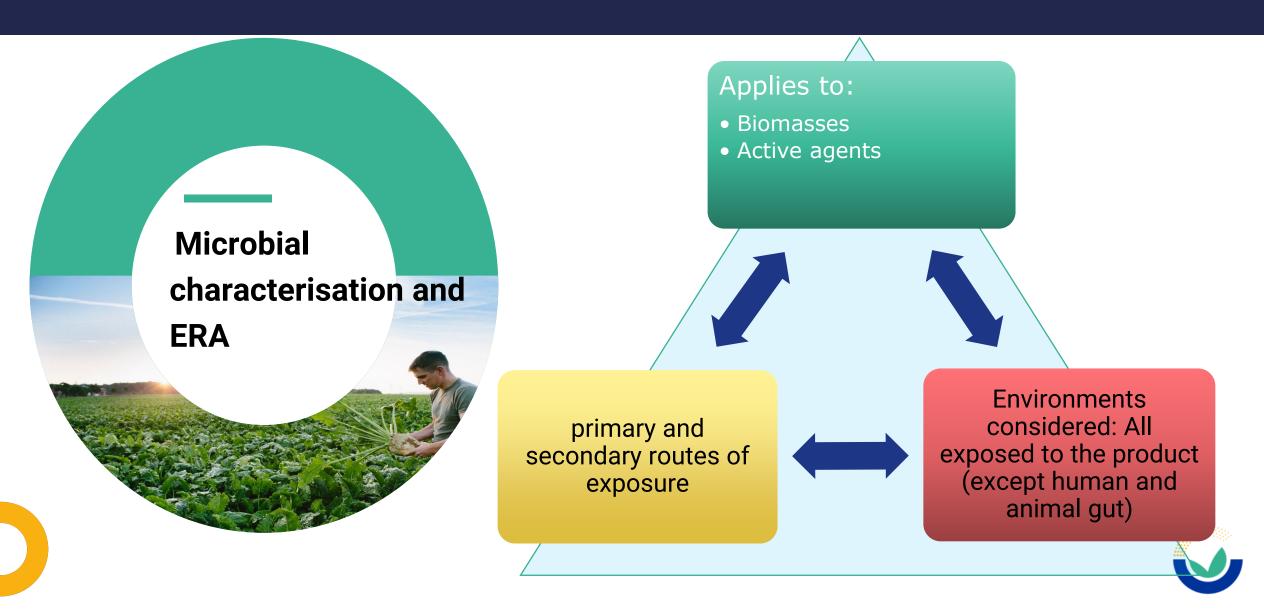
*developed through cisgenesis and intragenesis	Published, <u>link</u>	Feb 2012
*developed using Zinc Finger Nuclease 3 and other Site-Directed Nucleases	Published, <u>link</u>	Oct 2012
*developed using type 1 and type 2 Site-Directed Nucleases and Oligonucleotide Directed Mutagenesis	Published, <u>link</u>	Nov 2020
*Update - developed through cisgenesis and intragenesis	Published, <u>link</u>	Oct 2022
*Criteria for risk assessment of plants developed through targeted mutagenesis and cisgenesis	Published, <u>link</u>	Oct 2022

Microorganisms

new developments in biotechnology applied to microorganisms (new genomic	Published, <u>link</u>	July 2024
techniques)		

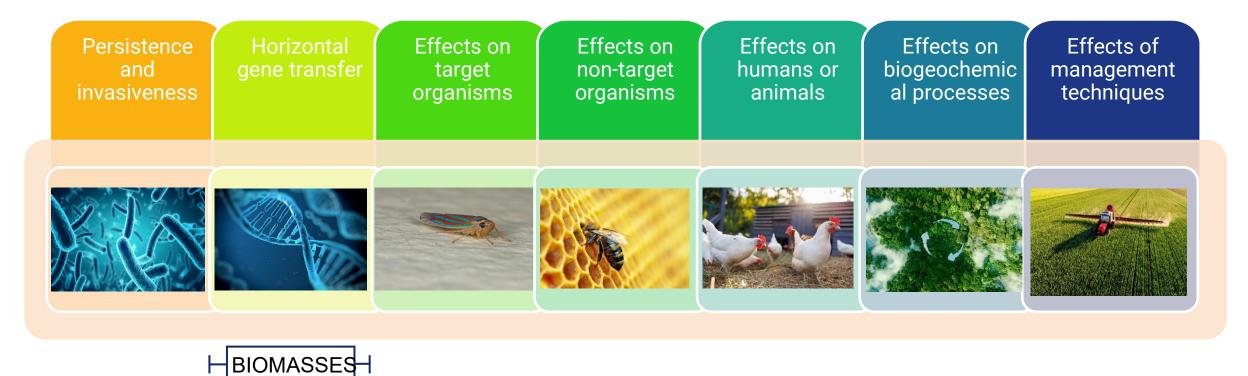
Animals

*new developments in biotechnology applied to animals	Published, <u>link</u>	July 2025	
(including synthetic biology & new genomic techniques)		di di	


OVERALL CONCLUSIONS FROM EFSA

- Horizon scanning reports showing cases that are close to market
- No new hazards associated NGTs were identified compared to EGTs and conventional breeding
- There is a need for flexibility in the data requirements for the risk assessment, as on a case-by-case lesser amounts of data might be needed

*Opinions are subject to <u>literature scans</u> to capture relevant publications in the remit of the mandates



GM MICROORGANISMS RA GUIDANCE

AREAS OF ENVIRONMENTAL RISK

As defined in Commission Directive (EU) 2018/350 on the ERA of GMOs (Annex II Section D.1)

ACTIVE AGENTS

EXCEPTIONS

- General (e.g.):
 - Biomasses not containing genes of concern
- Specific per area of risk (e.g.):
 - Persistence and invasiveness- GM active agents which modification results in traits already present in microorganisms of the same taxonomic in the receiving environmental microbiome(s).
 - Effects on non-target organisms- GM active agent interacts solely with the target organism.

NGT ANIMALS

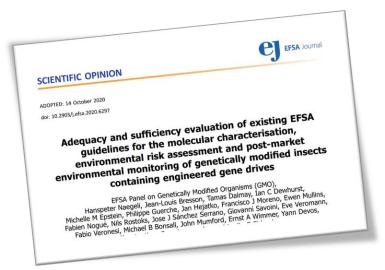
No new hazards AHAW -NGT specific Guidance updates

DOI: 10.2903/j.efsa.2025.9566

SCIENTIFIC OPINION

New developments in biotechnology applied to animals: An assessment of the adequacy and sufficiency of current EFSA guidance for animal risk assessment

EFSA Panel on Genetically Modified Organisms (GMO) | Josep Casacuberta |
Francisco Barro | Albert Braeuning | Ruud de Maagd | Michelle M. Epstein | Thomas Frenzel |
Jean-Luc Gallois | Frits Koning | Antoine Messéan | F. Javier Moreno | Fabien Nogué |
Alan H. Schulman | Christoph Tebbe | Eve Veromann | Leslie Firbank | Debora Glandorf |
Mette S. Herskin | Simon Geoffrey Lillico | Robin Ornsrud | Anna Troedsson-Wargelius |
Michele Ardizzone | Paolo Lenzi | Ana M. Camargo | Nikoletta Papadopoulou |
Reinhilde Schoonjans | Marika Vitali | Giovanni Savoini


Correspondence: nif@efsa.europa.eu

The declarations of interest of all scientific experts active in EFSA's work are available at https://open.efsa.europa.eu/experts

Abstract

EFSA was requested by the European Commission to provide a scientific opinion on new developments in biotechnology, including new genomic techniques, as applied to animals for food, feed and other agricultural uses. A horizon-scanning exercise identified a variety of animals obtained with new genomic techniques, with the potential to reach the EU market in the short, medium and long term. No novel hazards have been identified that are linked to either the modification process or the newly introduced trait, when SDN-1, SDN-2 and comparable techniques (e.g. base editing or prime editing) were compared to established genomic techniques (EGTs) or conventional breeding. Hazards posed by SDN-3 are of the same nature as those posed by EGTs and the targeted insertion may reduce the potential hazards associated with the disruption of endogenous genes and/or regulatory elements in the recipient genome. Hazards posed by the new trait resulting from the introduced transgenic or intragenic DNA sequence are of the same nature as those posed by EGTs. Hazards posed by the new trait resulting from the intro-

GENE DRIVES - 2020 - 2023 - 2025 YANN DEVOS

0-0

2 yrs

400 K

Andrew Roberts
(Agriculture & Food
Systems Institute, US)

Michael Bonsall (University of Oxford, UK)

Boet Glandorf (NL)

David O'Brochta

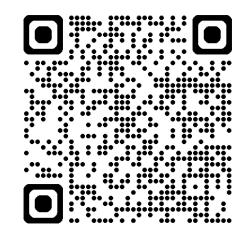
(Foundation for the National Institutes of Health, US)

Geoff Ridley

(Landcare Research New Zealand Limited, NZ)

Jörg Romeis (Agroscope, CH) Patrick Rudelsheim (Perseus, BE)

ACKNOWLEDGEMENTS


- **GMO Panel:** Francisco Barro, Albert Braeuning, Josep Casacuberta (Chair), Ruud de Maagd, Michelle M Epstein, Thomas Frenzel, Jean-Luc Gallois, Frits Koning, Antoine Messéan, F Javier Moreno, Fabien Nogué, Giovanni Savoini, Alan H Schulman, Christoph Tebbe and Eve Veromann.
- Ad hoc WG experts
- GMO Team EFSA (18): ARDIZZONE Michele, BONATTI Martina, DE SANCTIS Giacomo, FERNANDEZ DUMONT, FERRARI Arianna, GENNARO Andrea, GOUMPERIS Tilemachos, JACCHIA Sara, KAGKLI Dafni Maria, LENZI Paolo, LEWANDOWSKA Aleksandra, MARTIN CAMARGO Ana, MEZZADRI Martina, NERI Franco Maria, OLSHEVSKA-GRIGOROV Yustina, PAPADOPOULOU Nikoletta (TL), RAFFAELLO Tommaso
- Contractors (protein safety)
- ISA experts, MS Competent Authorities
- HoU Ana Afonso

CONTACT US

 For submitting a dossier for market approval or catalogue of services to applicants, SME support, General presubmission advice:

https://www.efsa.europa.eu/en/applications/gmo

 For any questions about EFSA: https://connect.efsa.europa.eu/RM/s/help

STAY CONNECTED

SUBSCRIBE TO

efsa.europa.eu/en/news/newsletters efsa.europa.eu/en/rss Careers.efsa.europa.eu – job alerts

FOLLOW US ON BLUESKY

@efsa.bsky.social @efsa-animals.bsky.social

@efsa-plants.bsky.social

FOLLOW US ON INSTAGRAM

@onehealth_eu

LISTEN TO OUR PODCAST

Science on the Menu –Spotify, Apple Podcast and YouTube

FOLLOW US ON LINKEDIN

Linkedin.com/company/efsa

CONTACT US

efsa.europa.eu/en/contact/askefsa

